SABER Level 2A Processing ### Chris Mertens Science Data Analyst c.j.mertens@gats.hampton.va.us ## SABER Level 2A Processing Heritage • GATS Heritage for Level 2A Processing: #### Software & Lessons Learned from: - HALOE Level 2 - LIMS Level 2 - MASDA (LIMS reprocessing) Level 2 - Retrieval Algorithms/Support - ISAMS - CLAES - CRISTA #### SABER Level 2A System Requirements #### **Input:** Level 1B File (1 per day) - Engineering Units - Grouped by Atmospheric Scan #### Output: Level 2A File (1 per day) - Volume mixing ratios and emission rates - Grouped by Atmospheric Scan #### **Processing:** - Retrieve Level 2 routine products - kinetic temperature, pressure, and density - volume mixing rations (vmr) - volume emission rates (VER) - Quality check #### SABER Routine Products: Estimated Accuracies and Precisions | | Measurement | | | |---------------------------|-------------|-----------------|---------------------| | Parameter | Range | Accuracy | Precision | | Temperature | 10-130 km | 1.5K, 15-80 km | 0.5K, 15-70 km | | | | 4.0K, 80-100 km | 1.0K, 70-80 km | | | | | 2.0K, 80-100 km | | O ₃ (9.6µm)* | 15-100 km | 20%, 15-90 km | \leq 5%, 15-70 km | | | | 30%, 90-100 km | 20%, 70-90 km | | O ₃ (1.27µm)** | 50-105 km | 20%, 50-105 km | 10%, 50-85 km | | | | | 15%, 85-105 km | | H ₂ O (6.3µm) | 15-80 km | 20%, 15-70 km | 10%, 20-70 km | | | | 30%, 70-80 km | 25%, 70-80 km | | OH (ν)+ | 80-100 km | 3%, 80-90 km | 0.1%, 80-90 km | | | | 5%, 90-100 km | 5%, 90-100 km | | $O_2(^1\Delta)+$ | 50-105 km | 3%, 50-90 km | 0.05%, 50-70 km | | | | | 0.2%, 70-80 km | | | | | 1.0%, 80-90 km | | NO(ν)+ | 90-180 km | 5%, 100-170 km | 3%, 100-150 km | | | | | 5%, 150-170 km | ^{*} Nighttime accuracy estimates. Daytime accuracy degrades due to Non-LTE. + Applies to daytime, nighttime, and twilight. ^{**} Daytime measurement only. Under twilight conditions accuracy degrades due to difference in chemical lifetime of O_3 and radiative lifetime of $O_2(^1\Delta)$. ### SABER Level 2A System Design #### SABER Level 2A Single Profile $T_K(P)$ Retrieval Module (SPTPRM) #### SABER Level 2A #### SABER Level 2A Single Profile VER Retrieval Module (SPVERRM) #### **Retrieved Parameters** NO (5.3μm) VER OH (1.6μm) VER OH (2.0μm) VER ## CSCI: Read in Level 1B Files Requirements - (1) Open and read Level 1B NetCDF; file for current day. - (2) Sort and store data by scanning event and channel identification number. ## CSCI: Read in Level 1B Files Testing ### **Testing:** | <u>Test</u> | Requirement | |--|-------------| | • Write Level 1B file to Ascii formatted file. | 1 | | Read in Level 1B NetCDF file and dump to | 1 | | Ascii formatted file. | | | Make point-by-point comparison of NetCDF- | 1 | | to-Ascii file with direct Ascii file. | | | Dump data sorted by scanning event and channel | 2 | | identification number. Make point-by-point | | | comparison. | | ### CSCI: Read in Auxiliary Files Requirements - (1) Open and read instrument characterization files from Level 1. - (2) Open and read climatological database. - (3) Open and read spectroscopic and kinetics databases. ## CSCI: Read in Auxiliary Inputs Testing ### **Testing:** | <u>Test</u> | Requirement | |---|-------------| | • Open and read in data. | 1, 2, 3 | | Dump data and make point-by-point comparison. | 1, 2, 3 | # CSCI: T(P) (15 μ m) and O₃ (9.6 μ m) Retrieval Requirements - (1) Retrieve T, P, and O₃ vmr for each scanning event supplied by Level 1B file. - (2) Compute ρ and Z from retrieved T(P). # CSCI: T(P) (15 μ m) and O₃ (9.6 μ m) Retrieval Testing #### **Testing:** | <u>Test</u> | Requirement | |--|-------------| | • Create synthetic Level 1B radiance from model | 1 | | atmosphere. | | | • Retrieve T(P) and O ₃ vmr from synthetic | 1 | | radiances. | | | Compare retrieved and model atmosphere T(P)
and O₃ vmr. | 1 | | • Compare computed and model atmosphere ρ and h | Z. 2 | ## CSCI: H₂O (6.3µm) vmr Retrieval Requirements - (1) Retrieved T(P) as input. - (2) Retrieve H₂O vmr for every scanning event supplied by Level 1B file. ## CSCI: H₂O (6.3µm) vmr Retrieval Testing ### **Testing:** | <u>Test</u> | Requirement | |--|-------------| | • Dump input T(P) data and compare to output | 1 | | from respective CSCI. | | | • Create synthetic Level 1B radiances from model | 2 | | atmosphere. • Patriova II O ymr from synthetic rediences | 2 | | Retrieve H₂O vmr from synthetic radiances. Compare retrieved and model atmosphere H₂O | 2 | | vmr. | 2 | ## CSCI: NO (5.3µm) VER Retrieval Requirements - (1) Retrieved T(P) as input. - (2) Retrieve NO VER for every scanning event supplied by Level 1B file. # CSCI: NO VER Retrieval Testing ### **Testing:** | <u>Test</u> | <u>Requirement</u> | |---|--------------------| | • Dump input T(P) data and compare to output | 1 | | from respective CSCI. | | | • Create synthetic Level 1B radiances from model | 2 | | atmosphere. | | | Retrieve NO VER from synthetic radiances. | 2 | | • Infer NO vmr and compare to model atmosphere. | 2 | # CSCI: OH (1.6µm and 2.0µm) VER Retrieval Requirements - (1) Retrieved T(P) as input. - (2) Retrieve OH VER for every scanning event supplied by Level 1B file. # CSCI: OH VER Retrieval Testing ### **Testing:** | <u>Test</u> | <u>Requirement</u> | |--|--------------------| | • Dump input T(P) data and compare to output | 1 | | from respective CSCI. | | | Create synthetic Level 1B radiances from model | 2 | | atmosphere. | | | Retrieve OH VER from synthetic radiances. | 2 | | • Infer OH vmr and compare to model atmosphere. | 2 | ## CSCI: O_2 ($^1\Delta$) (1.27µm) VER Retrieval Requirements - (1) Retrieved T(P) as input. - (2) Retrieve O_2 ($^1\Delta$) VER for every scanning event supplied by Level 1B file. # CSCI: O₂ (¹Δ) VER Retrieval Testing ### **Testing:** | <u>Test</u> | <u>Requirement</u> | |---|--------------------| | • Dump input T(P) data and compare to output | 1 | | from respective CSCI. | | | • Create synthetic Level 1B radiances from model | 2 | | atmosphere. | | | • Retrieve O_2 ($^1\Delta$) VER from synthetic radiances. | 2 | | • Infer O ₂ vmr and compare to model atmosphere. | 2 | ## CSCI: O_3 (1.27 μ m) vmr Retrieval Requirements - (1) Retrieved T(P) as input. - (2) Retrieved O_3 (9.6µm) vmr below 50km as input. - (3) Retrieved O_2 ($^1\Delta$) VER as input. - (4) Retrieve O₃ vmr for daytime scanning events supplied by Level 1B file. ## CSCI: O_3 (1.27 μ m) vmr Retrieval Testing ### **Testing:** | <u>Test</u> | Requirement | |--|-------------| | • Dump input T(P), O_3 vmr, and O_2 ($^1\Delta$) VER data and compare to their respective CSCI's which | 1, 2, 3 | | generated them. | | | • Create synthetic Level 1B radiances from model atmosphere. | 4 | | • Retrieve O_3 (1.27 μ m) vmr from synthetic radiances. | 4 | | • Compare retrieved O_3 (1.27 μ m) vmr with model atmosphere. | 4 | ## CSCI: Write Level 2A File Requirements #### **Requirements:** (1) Write Level 2A products to NetCDF file for current day. ## CSCI: Write Level 2A File Testing ### **Testing:** | <u>Test</u> | <u>Requirement</u> | |--|--------------------| | • Write Level 2A file to Ascii formatted file. | 1 | | Read Level 2A NetCDF file and dump to Ascii | 1 | | formatted file. | | | Make point-by-point comparison of NetCDF-to- | 1 | | Ascii file with direct Ascii file. | | ### SABER Level 2A Processing Schedule | | | | | 1997 | | | 19 | 998 | | | 19 | 99 | | | 2000 | |---------------------------|----------|-------------|--------------|-------------|---------|-------|-------|-------|-------|-------|-------|----------|-----|---------|------------| | Task Name | Duration | Start | Finish | Qtr 2 Qtr 3 | 3 Qtr 4 | Qtr 1 | Qtr 2 | Qtr 3 | Qtr 4 | Qtr 1 | Qtr 2 | Qtr 3 Qt | r 4 | Qtr 1 Q | tr 2 Qtr 3 | | 1.6 Level 2A | 370 days | Wed 7/1/98 | Tue 11/30/99 | | | | Ų | | | | | | | | | | Write Level 2A Software | 132 days | Wed 7/1/98 | Thu 12/31/98 | | | | ų į | | | | | | | | | | Forward model setup NLTE | 13.2 wks | Wed 7/1/98 | Wed 9/30/98 | | | | | |] | | | | | | | | Test Forward Model Setups | 1 day | Thu 10/1/98 | Thu 10/1/98 | | | | | | | | | | | | | | Volume emission retrieval | 26.4 wks | Wed 7/1/98 | Thu 12/31/98 | | | | | | | | | | | | | | Retrieval-LTE | 26.4 wks | Wed 7/1/98 | Thu 12/31/98 | | | | | | | | | | | | | | Retrieval-NLTE | 26.4 wks | Wed 7/1/98 | Thu 12/31/98 | | | | | | | | | | | | | | Test and Debug | 238 days | Fri 1/1/99 | Tue 11/30/99 | ## SABER Level 2A Processing Risk/Mitigation #### Risk - (1) Staff size. - (2) Non-LTE Retrieval algorithm development challenging. - (3) Non-LTE Retrieval algorithms are computationally time consuming. #### Mitigation - (1) GATS inhouse expertise. - Over a decade of experience developing satellite retrieval systems. - Lessons learned from LIMS, HALOE, CLAES, ISAMS, and CRISTA. - (2) Close interaction with SABER Science Team members. - Science team consists of world experts in non-LTE effects and upper atmospheric physics and chemistry. - Prototype retrieval algorithms in place for all routine products except T_K. - Prototype T_K retrieval algorithm underway. - (3) Expertise from Science Team members to speed up algorithms, and utilize PVM processing. ## SABER Level 2A Processing Summary - Level 2A Processing design complete. - Prototype T_K retrieval algorithm underway. Prototype algorithms for remaining routine products in place. - Utilize GATS inhouse expertise migrating prototype software to operational software. - Tests and delivery dates scheduled. - Extensive validation during software development through interaction with Science Team members.